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LETTER TO THE EDITOR 

Frustrated antiferromagnets in an external magnetic 
field 

Ya V Fyodorov, I Ya Korenblit and E F Shender 
Leningrad Nuclear Physics Institute, Gatchina, Leningrad 188350, USSR 

Received 8 August 1989, in final form 15 December 1989 

Abstract. Magnetic properties of disordered Ising antiferromagnets with frustrated intra- 
sublattice exchange interactions are studied. The theory explains satisfactorily some exper- 
imental results. 

Some strongly disordered Ising antiferromagnets (AF) are currently under experimental 
investigation [l-41. In [5-81, a mean-field-type theory of such magnets has been devel- 
oped and AF in which the frustration of intersublattice exchange interactions exceeds 
that of the intrasublattice ones have been investigated in detail. It has been shown that 
the temperature Tg(H)  of the phase transition from the ergodic AF state to the non- 
ergodic one should increase with the magnetic field H up to a field H o  where the line 
T&H) crosses the Neel temperature line T,(H). At H > Ho,  the temperature Tg(H)  
falls with increasing H. A twofold increase of T,(H) has been observed in the Ising 
metamagnet Fe,Mgl -$12 [ 11. 

Recently, another frustrated AF, Fe,Mnl-,Ti03, has been studied [3,4]. Some 
experimental results obtained for alloys with x > 0.57 differ from both the earlier 
observations for Fe,Mgl -,Cl* and from theoretical predictions [5-81. 

(i) The curve representing Tg(H)  has a sharp maximum at some field H,  lower than 

(ii) The measured ratio Tg(H,) / Ig(0)  = 6 and is three times greater than the theor- 

(iii) The magnetic susceptibility has a minimum in the ergodic state. The greater the 

the crossing field Hoe At H,, T,(H) touches the Neel temperature curve T,(H). 

etical value. 

degree of frustration the more pronounced the minimum. 

The aim of this letter is to show that all these features can be explained if it is taken 
into account that in Fe,Mnl -,Ti03 only the intrasublattice exchange interaction is 
frustrated. The reason that the frustration of the intersublattice interaction is small or 
zero is as follows. Both FeTi03 and MnTi03 are layered AF with antiferromagnetic 
interlayer interactions. The intralayer interaction is ferromagnetic in FeTi03 and anti- 
ferromagnetic in MnTi03. So it is natural to suppose that during alloying of FeTi03 
with Mn the sign of the intersublattice interaction does not fluctuate and only the 
intrasublattice interaction is frustrated. 
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We consider the system of spins distributed randomly over two sublattices and 
interacting according to the Ising Hamiltonian 

p = 1 , 2  is the sublattice number, SPi = k1. As is usual in the infinite-ranged model [9], 
we suppose that the interaction energies Jii and Vii do not depend on the distance rij and 
are distributed normally with the mean values JOIN,  Vo/N and variances J 2 / N ,  v / N ,  
where N is the total number of spins in a sublattice. 

The infinite-ranged model is generally accepted to describe the static properties of 
real spin glasses and re-entrant magnets. The reason for this is that correlations due to 
spatial dispersion have very slow time decay, and so the spin glass order parameter 
differs from zero for actually attainable times at least for Ising systems [lo, 111. We show 
in this letter that magnetic properties of the materials under discussion are qualitatively 
explained in the framework of the infinite-ranged model as well. 

The equations of state for this model, which determine the sublattice magnetisations 
m1,2, the Parisi functions q1,2(x) [12], the free energy etc, were obtained earlier [6,7] 
using the replica trick and the Paris ansatz. In particular, the expression for the transition 
temperature Tg from the ergodic state to the broken replica symmetry (non-ergodic) 
phase is 

( T i  - V 2 ( ~ ~ ~ h - 4 E 1 ) ) ( T i  - V * ( C O S ~ - ~  E,))  - J 4 ( ~ ~ ~ h - 4  E , ) ( c o s ~ - ~  E2) = 0 

E, = ( l / T ) [ H o  + VOm, - JomB + z(V2q, + J2q,-)1’2] 

(2) 

P # P  

where m, and q, should be obtained from the Sherrington-Kirkpatrick-type equations 

mp = (tanh E,) q, = (tanh2 E,). (4) 

In the J/V+ 0 limit, equation (2) splits into two independent equations = 

V 2 ( ~ ~ ~ h - 4 E p ) .  This means that the non-ergodicity appears in the sublattices inde- 
pendently. Without the external field ml  = -m2, q1 = q2,  and so Tgl = Tg2. If the field 
is applied, Tgl # Tg2. It is clear that the irreversibility and other spin-glass-type effects 
appear at the higher of these temperatures, so it is the magnetic field dependence that 
should be compared with experiments. 

For the sublattice with spins down at H+ 0 (sublattice one) the absolute value of 
the magnetisation 1 ml  I is smaller than m2 at all H ,  Tvalues in the AF region of the phase 
diagram. This means that the effective field on spins of the first sublattice is smaller than 
that on spins of the second one, and so T,,(H) > Tg2(H). At the onset of the paramagnetic 
phase the temperatures T,,(H) coincide. 

Similar arguments can be used to explain qualitatively the magnetic field depen- 
dences of T , If we suppose that the metamagnetic transition point is not in the phase 
diagram region we consider now (the influence of the metamagnetic phase transition on 
the spin glass properties and vice versa have been considered in [7, SI), Iml I decreases 
monotonically when Hincreases and goes to zero at some field H = H,. Hence it is clear 
that Tg,(H) increases with H for H < H,. For H > H ,  the magnetisation ml is positive 
and increases with H ,  so Tgl(H)  falls. 

Y 
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Figure 1. The phase H-Tdiagram of a frustrated 
antiferromagnet. The parameters are: Vo = J = 
0; J o  = 1; Jo/V = 1.7. The phases are: p-para- 
magnetic; AF-antiferromagnetic ergodic; 
AFscantiferromagnetic non-ergodic; sG-non- 
ergodic phase without antiferromagnetic order. 
The chain curve denotes the temperature at which 
the second-sublattice non-ergodicity appears. 

On the other hand, at the second sublattice T,,(H) decreases with increasing H for 
small H ,  and increases at larger fields H > H ,  up to a value of H when the anti- 
ferromagnetic ordering is destroyed. 

Thus, the curve T,,(H) has a maximum in the antiferromagnetic phase on the 
ml(H,  T )  = 0 line. The value T,,(H,) = Tgm can be determined from 

41 = (tanh’(vz / T g m ) G )  Ti,,, = V’(~osh-~(V,  /T,,)*) ( 5 )  

which has only one solution q1 = 0, Tgm = V. This means that the transition considered 
is equivalent to the transition from the ‘paramagnetic’ state of the first sublattice (ml  = 
q1 = 0) to the ‘pure’ spin glass (ml = 0, q1 # 0). So Tgl(H)  should have a cusp at H = 

The H-Tphase diagram a t J  = 0, Vo = 0 and TN(0)/Tg(O) = 9.5 obtained bynumeri- 
cal solution of (2) and (4) is given in figure 1. We should note that in all samples studied 
in [3,4],  the long-range magnetic ordering disappeared before the second-order phase 
transition was reached, which means that either V, is small or the first-order transition 
is depressed by the disorder [7,8]. This is why it is the results for V, = 0 that are compared 
with experiment. 

Comparison of figure 1 with figure 3 of reference [4] shows us that the general 
behaviour of the theoretical and experimental T,-curves is the same: for H < H,  as well 
as for H > H,,, the T,-curve is within the antiferromagnetic phase. In contrast to what is 
found by experiment, T,,(H,) # TN(H,) in the theoretical phase diagram, but the 
difference between these two values is very small, so it probably cannot be detected 
without special measurement techniques. 

If J = 0, the increase of Tg in the magnetic field is much larger than in the case where 
V = Ostudiedby us previously [6]: at T,(O)/T,(O) = 9.5, T,has an approximatelytwofold 
increase at V = 0 and a sixfold increase if J = 0 (figure 1). The latter number does not 
differ essentially from the measured value. 

H m .  
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We would like to note also that at small fields T,(H) - T,(O) - Ha,  a = 2 at J # 
0 and (Y = 1 at J = 0. This enables us to understand why the a-value measured for 
Fe,Mn1_,TiO3, x > 0.57 is much smaller than 2-which was unclear before and was 
considered in [13] to show a disagreement between the theory and experiment. 

At non-zero (but small) J the maximum in the T,,(H) curve broadens and moves 
from the T,(H) curve into the body of the antiferromagnetic phase (figure 2). Strictly 
speaking, the second solution Tg2(H) of (7) does not make sense at J # 0 as the non- 
ergodicity in this case appears in both sublattices simultaneously. But if J Q V ,  the non- 
ergodicity in the second sublattice in the temperature interval T,,(H) > T > Tg2(H) is 
small: 

d 42 (x)/dx ,= ( J 2 / V 2  )(d 4 1 (4 ldx ) .  
The equations of state obtained earlier [7] enabled us to obtain a general expression 

for the magnetic susceptibility x, valid for any H ,  T values. For the ergodic state, the 
formula for x can be derived by differentiating ( 2 )  for mp and qp with respect to H at 
H + 0 and has a rather simple form: 

g k  = (dk  tanh E,/dE,k)/ H.+O. 
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For Vo = V = 0 this expression is equivalent to that given in [6]. 
We see that the V2- and J2-terms in (6) have opposite signs, i.e. the frustrations of 

the intersublattice and intrasublattice exchange interactions influence x in different 
ways. This can be easily understood by considering the effect of the weak external 
magnetic field H on the variance 6Hp of the effective field acting on spins of a subsystem 
p .  It follows from (3) that 6Hp is equal to 

6 H p  = (V2qp + JZq,-)1’2 P # P .  (7) 
A weak magnetic field decreases I m1 I and q1 (note that the subscript one applies to 

the sublattice with spins directed down at H = 0) and increasesm2 and q 2 ,  so the magnetic 
field contributions to V2qp and J2qP have different signs. 

Analytically, the x( T )  dependence in the ergodic state can be studied for strongly 
frustrated AF, when b = (Jo  + V o ) / ( J 2  + V2)lI2 - 1 1. In this case T,(0)/TN(O) = 
1 - b ,  and the perturbation theory on b can be derived for all temperatures above 
Tg [ 5 ] .  According to [ 5 ] ,  it appears that at V = 0, J # 0, the susceptibility increases 
monotonically with the decrease of Tin the ergodic phase. If J = 0, V # 0, the situation 
is quite different. In this case 

Here t = 1 - T/TN G 1. It follows from (8) that x changes non-monotonically with T 
for Tg < T < TN and has a minimum at z = ($b2)1/3 < b. It is seen from figure 3 that for 
J = 0 such a dependence on x( 7’) is found for any degree of frustration. This conclusion 
agrees with the experimental observations [3,4]. Moreover, comparing figure 3 with 
figure 1 [4] we see that in both the theory and experiment the minimum in the x( T) 
curves nearly disappears in the weakly frustrated magnets. 

To study x( T )  below the T,-point the general expressions of state derived in [7] 
should be solved, which is possible only near Tg,  when tg = ( Tg - T ) / T g  G 1. Using the 
procedure proposed in [6] we calculate the derivatives D+ = d In x/d In TI T = T g + O .  It 
appears that D- > 0, D, < 0 at some values of J/V, which means that x ( T )  has a 
cusp at T = T,. There is a disagreement between theory and experiment at this point: 
according to the theory x( T) changes very slightly below Tg and has a cusp at T = Tg, 
while experimentally the field-cooled susceptibility does not reveal an anomaly at T = 
Tg and becomes temperature independent only considerably below Tg. 

We would like to note in conclusion that our theory can explain the existence of a 
wide smooth maximum in the T,(H) curve observed for Feo jj2Mgo &12 [ 11. The reason 
for its existence is that when an FeC1, crystal with strong ferromagnetic in-plane inter- 
action and weak antiferromagnetic inter-plane interaction is diluted by Mg atoms, the 
‘re-entrant’ phase transition is exhibited when the spin concentration is near to the in- 
plane percolation threshold. In this case the next-nearest-neighbour in-plane exchange 
interaction becomes important, but essentially does not exceed the inter-plane inter- 
action. So, it is natural to suppose that for the magnets we discussed just now J i V. It 
can be seen from figure 2 that the theory predicts the existence of a smooth maximum 
in the Tg-curve for such a region of parameters. 

x = (1/2J(j)[1 - (TN/J(J) t (b  - h t 2 ) / ( b  f t)]. (8) 
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